Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Urban overheating presents significant challenges to public health and energy sustainability. Conventional radiative cooling strategies, such as cool roofs with high albedo, lead to undesired winter cooling and increased space heating demand for cities with cold winters, a phenomenon known as heating energy penalty. A novel roof coating with high albedo and temperature‐adaptive emissivity (TAE)—low emissivity during cold conditions and high emissivity during hot conditions—has the potential to mitigate winter heating energy penalty. In this study, we implement this roof coating in a global climate model to evaluate its impact on air temperature and building energy demand for space heating and cooling in global cities. Adopting roofs with TAE increases global urban air temperature by up to +0.54°C in the winter (99th percentile; mean change +0.16°C) but has negligible effects on summer urban air temperature (mean change +0.05°C). Combining TAE with high albedo effectively provides summer cooling and does not increase building energy demand in the winter, particularly for mid‐latitude cities. Sensitivities of air temperature to changes in emissivity and albedo are associated with local “apparent” net longwave radiation and incoming solar radiation, respectively. We propose a simple parameterization of air temperature responses to emissivity and albedo to facilitate the development of city‐specific radiative mitigation strategies. This study emphasizes the necessity of developing mitigation approaches specific to local cloudiness.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract Increasing the albedo of urban surfaces, through strategies like white roof installations, has emerged as a promising approach for urban climate adaptation. Yet, modeling these strategies on a large scale is limited by the use of static urban surface albedo representations in the Earth system models. In this study, we developed a new transient urban surface albedo scheme in the Community Earth System Model and evaluated evolving adaptation strategies under varying urban surface albedo configurations. Our simulations model a gradual increase in the urban surface albedo of roofs, impervious roads, and walls from 2015 to 2099 under the SSP3‐7.0 scenario. Results highlight the cooling effects of roof albedo modifications, which reduce the annual‐mean canopy urban heat island intensity from 0.8°C in 2015 to 0.2°C by 2099. Compared to high‐density and medium‐density urban areas, higher albedo configurations are more effective in cooling environments within tall building districts. Additionally, urban surface albedo changes lead to changes in building energy consumption, where high albedo results in more indoor heating usage in urban areas located beyond 30°N and 25°S. This scheme offers potential applications like simulating natural albedo variations across urban surfaces and enables the inclusion of other urban parameters, such as surface emissivity.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Key Points A new semi‐analytical spin‐up (SASU) framework combines the default accelerated spin‐up method and matrix analytical algorithm SASU accelerates CLIM5 spin‐up by tens of times, becoming the fastest method to our knowledge SASU is applicable to most biogeochemical models and enables computationally costly study, for example, sensitivity analysismore » « less
-
Abstract Accurately predicting weather and climate in cities is critical for safeguarding human health and strengthening urban resilience. Multimodel evaluations can lead to model improvements; however, there have been no major intercomparisons of urban‐focussed land surface models in over a decade. Here, in Phase 1 of the Urban‐PLUMBER project, we evaluate the ability of 30 land surface models to simulate surface energy fluxes critical to atmospheric meteorological and air quality simulations. We establish minimum and upper performance expectations for participating models using simple information‐limited models as benchmarks. Compared with the last major model intercomparison at the same site, we find broad improvement in the current cohort's predictions of short‐wave radiation, sensible and latent heat fluxes, but little or no improvement in long‐wave radiation and momentum fluxes. Models with a simple urban representation (e.g., ‘slab’ schemes) generally perform well, particularly when combined with sophisticated hydrological/vegetation models. Some mid‐complexity models (e.g., ‘canyon’ schemes) also perform well, indicating efforts to integrate vegetation and hydrology processes have paid dividends. The most complex models that resolve three‐dimensional interactions between buildings in general did not perform as well as other categories. However, these models also tended to have the simplest representations of hydrology and vegetation. Models without any urban representation (i.e., vegetation‐only land surface models) performed poorly for latent heat fluxes, and reasonably for other energy fluxes at this suburban site. Our analysis identified widespread human errors in initial submissions that substantially affected model performances. Although significant efforts are applied to correct these errors, we conclude that human factors are likely to influence results in this (or any) model intercomparison, particularly where participating scientists have varying experience and first languages. These initial results are for one suburban site, and future phases of Urban‐PLUMBER will evaluate models across 20 sites in different urban and regional climate zones.more » « less
An official website of the United States government
